Гаусс Карл

1777 год
-
1855 год

Германия

Немецкий математик, астроном и физик, участвовал в создании первого в Германии электромагнитного телеграфа. До самой старости он привык большую часть вычислений производить в уме…

По семейной легенде он уже в 3 года умел читать, писать и даже исправлял  счётные ошибки отца в платёжной ведомости для рабочих (отец работал то на стройке, то садовником…).

«В восемнадцать лет он сделал удивительное открытие, касающееся свойств семнадцатиугольника; такого в математике не случалось уже 2000 лет со времён древних греков (этот успех решил выбор Карла Гаусса: что изучать дальше языки или математику в пользу математики – Прим. И.Л. Викентьева). Его докторская диссертация на тему «Новое доказательство того, что каждая целая рациональная функция одной переменной может быть представлена произведением действительных чисел первой и второй степени» посвящена решению основной теоремы алгебры. Сама теорема была известна и раньше, но он предложил совершенно новое доказательство. Слава Гаусса была столь велика, что, когда в 1807 году французские войска подошли к Гёттингену, Наполеон приказал поберечь город, в котором живёт «величайший математик всех времён». Со стороны Наполеона это было очень любезно, но слава имеет и оборотную сторону. Когда победители наложили на Германию контрибуцию, они потребовали с Гаусса 2000 франков. Это соответствовало примерно 5000 нынешних долларов - довольно крупная сумма для университетского профессора. Друзья предлагали помощь, Гаусс отказывался; пока шли препирательства, выяснилось, что деньги уже уплачены знаменитым французским математиком Морисом Пьером де Лапласом (1749-1827). Лаплас объяснил свой поступок тем, что считает Гаусса, который был на 29 лет моложе его, «величайшим математиком в мире», т. е. оценил его чуть ниже, чем Наполеон. Позднее анонимный почитатель прислал Гауссу 1000 франков, чтобы помочь ему рассчитаться с Лапласом».

Питер Бернстайн, Против богов: укрощение риска, М., «Олимп-Бизнес», 2006 г., с. 154.


10 летнему Карлу Гауссу очень повезло с помощником учителя математики - Мартином Бартельсом (ему было тогда 17 лет). Он не только оценил талант юного Гаусса, но сумел выхлопотать ему стипендию от герцога Брауншвейгского для поступления в престижное училище Collegium Carolinum. Позже Мартин Бартельс был учителем и Н.И. Лобачевского


«К 1807 году Гаусс разработал теорию ошибок (погрешностей), и астрономы стали её использовать. Хотя во всех современных физических измерениях требуется указание ошибок, за пределами астрономии физики не заявляли об оценках погрешности вплоть до 1890-х годов (или даже позже)».

Ян Хакинг, Представление и вмешательство. Введение в философию естественных наук, М., «Логос», 1998 г., с. 242.

 

«В последние десятилетия среди проблем оснований физики особое значение приобрела проблема физического пространства. Исследования Гаусса (1816), Больяи (1823), Лобачевского (1835) и других привели к неевклидовой геометрии, к осознанию, что до сих пор безраздельно господствовавшая, классическая геометрическая система Евклида является лишь одной из бесконечного множества логически равноправных систем. Тем самым возник вопрос, какая из этих геометрий является геометрией действительного пространства.
Ещё Гаусс хотел решить этот вопрос посредством измерения суммы углов большого треугольника. Таким образом, физическая геометрия превратилась в эмпирическую науку, отрасль физики. Эти проблемы в дальнейшем рассматривались в особенности Риманом (1868), Гельмгольцем (1868) и Пуанкаре (1904). Пуанкаре подчёркивал, в особенности, взаимосвязь физической геометрии со всеми другими отраслями физики: вопрос о природе действительного пространства может быть решён только в рамках некоторой общей системы физики.
Затем Эйнштейн нашёл такую общую систему, в рамках которой на этот вопрос был дан ответ, ответ в духе конкретной неевклидовой системы».

Рудольф Карнап, Ганс Ган, Отто Нейрат, Научное миропонимание  - венский кружок, в Сб.: Журнал «Erkenntnis» («Познание»). Избранное / Под ред. О.А. Назаровой, М., «Территория будущего», 2006 г., с. 70.

 

В 1832 году Карл Гаусс «… построил систему единиц, в которой за основу были приняты три произвольные, независимые друг от друга основные единицы: длины (миллиметр), массы (миллиграмм) и времени (секунда). Все остальные (производные) единицы можно было определить с помощью этих трёх. В дальнейшем, с развитием науки и техники появились и другие системы единиц физических величин, построенные по принципу, предложенному Гауссом. Они базировались на метрической системе мер, но отличались друг от друга основными единицами. Вопрос об обеспечении единообразия в измерении величин, отражающих те или иные явления материального мира, всегда был очень важным. Отсутствие такого единообразия порождало существенные трудности для научного познания. Например, до 80-х годов XIX веке не существовало никакого единства в измерении электрических величин: использовалось 15 различных единиц электрического сопротивления, 8 единиц электродвижущей силы, 5 единиц электрического тока и т.д. Сложившееся положение сильно затрудняло сопоставление результатов измерений и расчётов, выполненных различными исследователями».

Голубинцев В.О., Данцев А.А., Любченко B.C., Философия науки, Ростов-на-Дону, «Феникс», 2007 г., с. 390-391.

 

«Карл Гаусс, как и Иссак Ньютон, часто не публиковал научные результаты. Но все опубликованные труды Карла Гаусса содержат значительные результаты - сырых и проходных работ среди них нет.

«Здесь надо различать самый метод исследования от изложения и опубликования его результатов. Возьмём для примера трех великих, - можно сказать, гениальных - математиков: Гаусса, Эйлера и Коши. Гаусс прежде чем опубликовать какой бы то ни было труд, подвергал свое изложение самой тщательной обработке, прилагая крайнюю заботливость о краткости изложения, изяществе методов и языка, не оставляя при этом следов той черновой работы, которой он до этих методов достиг. Он говаривал, что когда здание построено, то не оставляют тех лесов, которые для постройки служили; поэтому он не только не торопился с опубликованием своих работ, но оставлял их вылеживаться не то что годами, а десятками лет, часто к этой работе по временам возвращаясь, чтобы довести её до совершенства. […] Свои исследования по эллиптическим функциям, главные свойства которых он открыл за 34 года до Абеля и Якоби, он не удосужился опубликовать в течение 61 года, и они были опубликованы в его «Наследии» примерно ещё через 60 лет после его смерти. Эйлер поступал как раз обратно Гауссу. Он не только не разбирал лесов вокруг своего здания, но иногда даже как бы загромождал его ими. Зато у него видны все подробности самого способа его работы, что у Гаусса так тщательно скрыто. За отделкой Эйлер не гнался, работал сразу вчистую и публиковал в том виде, как работа получилась; но он далеко опередил печатные средства Академии, так что сам сказал, что академическим изданиям хватит его работ на 40 лет после его смерти; но здесь он ошибся - их хватило больше чем на 80 лет. Коши писал такое множество работ, как превосходных, так и торопливых, что ни Парижская академия, ни тогдашние математические журналы их вместить не могли, и он основал свой собственный математический журнал, в котором и помещал только свои работы. Гаусс про наиболее торопливые из них выразился так: «Коши страдает математическим поносом». Неизвестно, не говорил ли Коши в отместку, что Гаусс страдает математическим запором?

Крылов А. Н., Мои воспоминания, Л., «Судостроение», 1979 г., с. 331.


«… Гаусс был очень замкнутым человеком и вёл затворнический образ жизни. Он не опубликовал массу своих открытий, и многие из них были заново сделаны другими математиками. В публикациях он уделял больше внимания результатам, не придавая особого значения методам их получения и часто заставляя других математиков тратить массу сил на доказательство его выводов. Эрик Темпл Белл, один из биографов Гаусса, считает, что его необщительность задержала развитие математики по меньшей мере на пятьдесят лет; полдюжины математиков могли бы прославиться, если бы получили результаты, годами, а то и десятилетиями хранившиеся у него архиве».

Питер Бернстайн, Против богов: укрощение риска, М., «Олимп-Бизнес», 2006 г., с.156.

 

Новости
Случайная цитата
  • Функциональный подход в психологии – пример Милтона Эриксона
    «Я спросил студента: «Как пройти из этой комнаты в другую?»Он ответил: «Сперва нужно встать. Затем сделать шаг...».Я остановил его и сказал: «Назовите все способы, какими можно перейти из одной комнаты в другую».Он сказал: «Можно бегом, можно шагом, можно прыгая на одной ноге или на двух; можно проделывая сальто. Можно выйти из здания, обойти его снаружи и зайти в комнату через другую дверь. Если хочется, то можно залезть через окно...».         Я сказал: «Вы обещали мыслить масштабно, а сами до...