Математические открытия; а также математические идеи, используемые в других областях деятельности
ОРГ и распространение знанийKnowledge management - управление знаниями - за исключением методик творчества…
X
Математические открытия; а также математические идеи, используемые в других областях деятельности
ОРГ и распространение знанийKnowledge management - управление знаниями - за исключением методик творчества…
X
«Замечательная древняя наука была принесена в современную Европу греками из Египта. В Египте, задолго до пребывания там Моисея, жил величайший учёный, которому после его смерти фараон присудил божеское звание и имя: Тот, бог мудрости (знак - ибис).
Открытия Тота описаны, например, историком I века до н. э. Диодором Сицилийским (а также Платоном - в его диалоге «Федр»). Платон пишет о Тоте: «Он первым изобрёл число, счет, землемерие, звездочетство, игру в кости и шашки, а также письмена».
Первым считается изобретение Тотом фонетического алфавита (до этого надо было вызубривать тысячи иероглифов, по числу слов, а он заменил их несколькими десятками упрощённых символов, по одному на фонему). От алфавита Тота произошли финикийский, затем греческий, а от него - латинский и кириллица. В Индии и в Китае аналогичный процесс прошел независимо.
Платон описывает беседу Тота с богом Аммоном, который, соглашаясь с пользой письменности и алфавита Тота, скептически оценивает мысль Тота, будто люди, вооруженные письменностью, поумнеют, так как ум освободится для думания, когда отпадёт необходимость слишком много держать в памяти.
По приведённым Платоном словам Аммона, никакого поумнения ни грамотность, ни алфавит (ни, добавлю я, компьютер или телевизор) не принесут: наоборот, думать будут ещё меньше, так как будут надеяться на свои записи.
Сегодня наступающие на математику агрессоры пытаются полностью исключить из неё недоступное им думание, создавая взамен грандиозную компьютерную библиотеку «всех когда-либо существовавших математических текстов». Сочинение новых математических «работ» будет после этого Левиафана сводиться просто к нажатию кнопок для компиляции из забытых старых источников. Они убеждали меня (на заседании Исполнительного комитета Международного математического союза) принять самоубийственное для математики решение об обязательной принудительной компьютеризации каждой мысли таким доводом: спасти живопись от наступления фотографии все равно невозможно, это - поступь истории!
Но я продолжаю оставаться на той старомодной точке зрения, что 6 раз по 7 - по-прежнему сорок два, что нуль по-прежнему не положительное число (хоть этому и учат «современные» математики во Франции), что как живопись, так и математика должны и будут жить (прежде всего в интересах всего человечества).
Вторым открытием Тота был натуральный ряд (и математические рассуждения с участием актуальной бесконечности). До него многие думали, что существует самое большое число (сумма ежегодного суммарного налога фараону), а он объяснил, что всегда можно прибавить ещё единицу.
Геометрия была построена Тотом в виде землемерия (что это слово и означает). Он был при жизни главным землемером фараона и отвечал за измерение площадей всех земельных участков, которые ведь нужно было знать и для исчисления налога, и для прогноза урожая, и для дележа нильской воды в оросительных системах. Единственным отличием геометрии Тота от евклидовой было то, что он совершенно не заботился о независимости своих аксиом друг от друга.
И когда Евклид, через много столетий, стал писать учебник геометрии Тота для греческих учеников в виде книги, то он решил сократить исходный текст Тота и для этого выбрал из тех пяти аксиом Тота, которые были друг другу эквивалентны, всем известный теперь «пятый постулат», а другие постулаты Тота (вроде того, что сумма углов треугольника есть развёрнутый угол) он превратил в теоремы и доказал, выведя их из оставленного им аксиомой постулата о параллельных.
Если и не сам Тот, то его близкие ученики измерили радиус Земли с точностью в 1%, посчитав для этого верблюжьи шаги караванов между двумя столицами Египта - Фивами на юге и Мемфисом на севере (почти что на одном меридиане). Зная разницу максимальных высот Солнца в обеих столицах в один день, египетские учёные легко сосчитали радиус Земли (в числе верблюжьих шагов).
Греческие их последователи отнеслись к этим данным с недоверием, так как они вообще не доверяли засекреченной науке Египта, где, по их словам, «женщины публично проституировали себя с крокодилами».
Греки измерили радиус при помощи триремы, плывшей через Средиземное море от Египта до острова Родос. Они умножали время в пути на «скорость триремы при ветре средней силы», и у них Земля вышла вдвое больше, чем у египтян.
Через пару тысяч лет один генуэзский капитан попросил одну католическую королеву разрешить ему добраться на корабле до Индии, плывя на запад по Атлантическому океану. Королева сочла необходимой научную экспертизу проекта и в результате забраковала его, так как, по словам экспертов, никто в мире не сумеет построить столь большой корабль, чтобы он вместил так много бочек пресной воды, сколько требуется, чтобы не погибнуть от жажды в таком дальнем путешествии.
Впоследствии оказалось, что эксперты (как и все на свете) верили греческим измерениям, где расстояние было вдвое больше истинного. А у оптимиста-капитана были другие (египетского происхождения) географические представления. В конце концов королева разрешила ему, раз уж он так мечтает погибнуть от жажды, проделать свой рискованный эксперимент, что он и сделал (впрочем, неудачно: до Индии он так и не добрался).
Лейбниц говорил, что найти что-нибудь всегда трудно, особенно если ищешь, но труднее всего - когда ищешь именно это.
От геометрии Тот естественным ходом мысли перешел к звездочётству, а впрочем, он изобрёл и много другого - например, игру в шашки (которыми он демократически заменял слишком трудные, по его мнению, индийские шахматы). Интересно, что шахматы в то время существовали, кроме нынешнего вида, ещё в усложненном «компьютеризованном» варианте, где каждая фигура (скажем, конь) означала не одного всадника, а войско, численность которого была на фигуре указана. И взаимодействие фигур было не всегда полным уничтожением одной из них, а чаще приводило только к уменьшению надписанных численностей войск. Греки, заимствуя достижения Тота, переименовали его на свой лад в Гермеса Триждывеличайшего (Трисмегиста), и в средние века его сочинения многократно переиздавались (под названием «Изумрудная скрижаль»): у Ньютона дома было 5 экземпляров разных изданий.
Современное издание: A. D. Nock, A. J. Festugiere, Corpus Hermeticum, v. 1-4, Paris, 1945-1954. Перенесение всех этих знаний в Грецию совершилось главным образом за счёт промышленного шпионажа: у египетских жрецов науки были засекречены, и для их освоения требовалась подписка о неразглашении.
Историк Диодор Сицилийский описывает это так: «египетские жрецы рассказывают, на основании своих священных книг, что в раннее время их посетили Орфей, Музеус, Мелампус и Дедалус, а также поэт Гомер, спартанец Ликург и - позже - Солон из Афин, а также философ Платон; их также посетили Пифагор Самосский и математик Эвдокс, а также Демокрит из Абдеры и Энепид с Хиоса. Пифагор научился в Египте своему учению о Боге и геометрическим утверждениям, а также теории чисел, Энепид - вычислению орбиты Солнца» («История» Диодора Сицилийского, т. I, с. 96-98).
В перенесении математики египтян в Грецию особую роль сыграл Пифагор, проведший в Египте около 20 лет. Он привёз оттуда теорию переселения душ и вызванное ею вегетарианство (а то ненароком съешь тело души своего родственника, переселившегося после его смерти в корову или в свинью!). Обязавшись не публиковать полученные им от египетских жрецов научные сведения, Пифагор лишь устно пропагандировал свою науку, но держал её в тайне. Особенно охранялась тайна несоизмеримости диагонали квадрата с его стороной: ведь это открытие означает, что арифметика дробей недостаточна для практически необходимых измерений, а иррациональных чисел тогда ещё не было (их теорию создал Эвдокс, также обучавшийся в Египте). Недостаточность арифметики дробей для задач измерения подрывала авторитет математиков в глазах властей: ведь выходит, что математики занимаются ненужными философствованиями о малоценных предметах (дробях, пропорциях и т. п.), стало быть, и кормить их незачем.
Всё же через несколько поколений учеников геометрия Тота дошла через Пифагора до Евклида, который уже не был связан, как Пифагор, подпиской о неразглашении и всё опубликовал (Пифагор боялся и так ничего и не опубликовал, хотя школа пифагорейцев процветала больше тысячелетия, распространяя то вегетарианство, то веру в переселение душ, а то и геометрию, теорию чисел и принадлежащий им обеим «алгоритм Евклида», который, конечно, тоже был давно известен на Востоке).
Из всего этого ясно, что промышленный шпионаж с давних пор приносил человечеству большую пользу: без него до сгоревшей в Александрийской библиотеке древней мудрости современному человечеству пришлось бы добираться гораздо дольше».
Арнольд В.И., Что такое математика?, М., МЦНМО, 2004 г., с. 53-56.