Открытия в области физики и применение физических эффектов и моделей в других областях деятельности
Приём «единственной разницы» Джона Милля при решении научных задач
X
Открытия в области физики и применение физических эффектов и моделей в других областях деятельности
Приём «единственной разницы» Джона Милля при решении научных задач
X
«С 1896 года Макс Планк заинтересовался измерениями, производившимися в Государственном физико-техническом институте в Берлине, а также проблемами теплового излучения тел.
Любое тело, содержащее тепло, испускает электромагнитное излучение. Если тело достаточно горячее, то это излучение становится видимым. При повышении температуры тело сначала раскаляется докрасна, затем становится оранжево-жёлтым и, наконец, белым.
Излучение испускает смесь частот (в видимом диапазоне частота излучения соответствует цвету). Однако излучение тела зависит не только от температуры, но и до некоторой степени от таких характеристик поверхности, как цвет и структура.
В качестве идеального эталона для измерения и теоретических исследований физики приняли воображаемое абсолютное черное тело. По определению, абсолютно чёрным называется тело, которое поглощает все падающее на него излучение и ничего не отражает. Излучение, испускаемое абсолютно чёрным телом, зависит только от его температуры.
Хотя такого идеального тела не существует, неким приближением к нему может служить замкнутая оболочка с небольшим отверстием (например, надлежащим образом сконструированная печь, стенки и содержимое которой находятся в равновесии при одной и той же температуре). Одно из доказательств чёрнотельных характеристик такой оболочки сводится к следующему. Излучение, падающее на отверстие, попадает в полость и, отражаясь от стенок, частично отражается и частично поглощается. Поскольку вероятность того, что излучение в результате многочисленных отражений выйдет через отверстие наружу, очень мала, оно практически полностью поглощается. Излучение, берущее начало в полости и выходящее из отверстия, принято считать эквивалентным излучению, испускаемому площадкой размером с отверстие на поверхности абсолютно черного тела при температуре полости и оболочки.
Подготавливая собственные исследования, Макс Планк прочитал работу Кирхгофа о свойствах такой оболочки с отверстием. Точное количественное описание наблюдаемого распределения энергии излучения в этом случае получило название проблемы чёрного тела.
Как показали эксперименты с чёрным телом, график зависимости энергии (яркости) от частоты или длины волны является характеристической кривой. При низких частотах (больших длинах волн) она прижимается к оси частот, затем на некоторой промежуточной частоте достигает максимума (пик с округлой вершиной), а затем при более высоких частотах (коротких длинах волн) спадает. При повышении температуры кривая сохраняет свою форму, но сдвигается в сторону более высоких частот. Были установлены эмпирические соотношения между температурой и частотой пика на кривой излучения черного тела (закон смещения Вина, названный так в честь Вильгельма Вина) и между температурой и всей излученной энергией (закон Стефана - Больцмана, названный так в честь австрийских физиков Йозефа Стефана и Людвига Больцмана), но никому не удавалось вывести кривую излучения черного тела из основных принципов, известных в то время. Вину удалось получить полуэмпирическую формулу, которую можно подогнать так, что она хорошо описывает кривую при высоких частотах, но неверно передает её ход при низких частотах. Дж. У. Стретт (лорд Рэлей) и английский физик Джеймс Джинс применили принцип равного распределения энергии по частотам колебаний осцилляторов, заключенных в пространстве черного тела, и пришли к другой формуле (формуле Рэлея - Джинса). Она хорошо воспроизводила кривую излучения чёрного тела при низких частотах, но расходилась с ней на высоких частотах.
Макс Планк под влиянием теории электромагнитной природы света Джеймса Клерка Максвелла (опубликованной в 1873 г. и подтверждённой экспериментально Генрихом Герцем в 1887 г.) подошёл к проблеме чёрного тела с точки зрения распределения энергии между элементарными электрическими осцилляторами, физическая форма которых никак не конкретизируется. Хотя на первый взгляд может показаться, что выбранный им метод напоминает вывод Рэлея - Джинса, Макс Планк отверг некоторые из принятых этими учёными допущений.
В 1900 г., после продолжительных и настойчивых попыток создать теорию, которая удовлетворительно объясняла бы экспериментальные данные, Планку удалось вывести формулу, которая, как обнаружили физики-экспериментаторы из Государственного физико-технического института, согласовывалась с результатами измерений с замечательной точностью. Законы Вина и Стефана - Больцмана также следовали из формулы Планка. Однако для вывода своей формулы ему пришлось ввести радикальное понятие, идущее вразрез со всеми установленными принципами.
Энергия планковских осцилляторов изменяется не непрерывно, как следовало бы из традиционной физики, а может принимать только дискретные значения, увеличивающиеся (или уменьшающиеся) конечными шагами.
Каждый шаг по энергии равен некоторой постоянной (называемой ныне постоянной Планка), умноженной на частоту. Дискретные порции энергии впоследствии получили название квантов. Введенная Планком гипотеза ознаменовала рождение квантовой теории, совершившей подлинную революцию в физике. Классическая физика в противоположность современной физике ныне означает «физика до Планка».
Макс Планк отнюдь не был революционером, и ни он сам, ни другие физики не сознавали глубокого значения понятия «квант». Для Макса Планка квант был всего лишь средством, позволившим вывести формулу, дающую удовлетворительное согласие с кривой излучения абсолютно чёрного тела. Он неоднократно пытался достичь согласия в рамках классической традиции, но безуспешно. Вместе с тем он с удовольствием отметил первые успехи квантовой теории, последовавшие почти незамедлительно.
Его новая теория включала в себя, помимо постоянной Планка, и другие фундаментальные величины, такие, как скорость света и число, известное под названием постоянной Больцмана. В 1901 г., опираясь на экспериментальные данные по излучению чёрного тела, Макс Планк вычислил значение постоянной Больцмана и, используя другую известную информацию, получил число Авогадро (число атомов в одном моле элемента). Исходя из числа Авогадро, Планк сумел с замечательной точностью найти электрический заряд электрона.
Позиции квантовой теории укрепились в 1905 г., когда Альберт Эйнштейн воспользовался понятием фотона - кванта электромагнитного излучения - для объяснения фотоэлектрического эффекта (испускание электронов поверхностью металла, освещаемой ультрафиолетовым излучением). Эйнштейн предположил, что свет обладает двойственной природой: он может вести себя и как волна (в чём нас убеждает вся предыдущая физика), и как частица (о чём свидетельствует фотоэлектрический эффект).
В 1907 г. Эйнштейн ещё более упрочил положение квантовой теории, воспользовавшись понятием кванта для объяснения загадочных расхождений между предсказаниями теории и экспериментальными измерениями удельной теплоёмкости тел - количества тепла, необходимого для того, чтобы поднять на один градус температуру одной единицы массы твёрдого тела.
Ещё одно подтверждение потенциальной мощи введённой Макс Планк новации поступило в 1913 г. от Нильса Бора, применившего квантовую теорию к строению атома. В модели Бора электроны в атоме могли находиться только на определённых энергетических уровнях определяемых квантовыми ограничениями. Переход электронов с одного уровня на другой сопровождается выделением разности энергий в виде фотона излучения с частотой, равной энергии фотона деленной на постоянную Планка. Тем самым получали квантовое объяснение характеристические спектры излучения, испускаемого возбуждёнными атомами».
Лауреаты Нобелевской премии: Энциклопедия: М – Я, М., «Прогресс», 1992 г., с. 224-226.