Философский смысл парадоксов (апорий) Зенона

Парадоксы Зенона «…вызвали такое волнение, 
что и сейчас можно наблюдать некоторую рябь»

Д. Я. Стройк, Краткий очерк истории математики,
М., «Наука», 1964 г., с. 53. 

 

Зенон сформулировал ряд апорий («неразрешимых положений»), показав – говоря современным языком – что в них считаются совпадающими два процесса: само физическое движение и возникновение в нашем сознании последовательности его отдельных фрагментов, а это ведёт к логическим противоречиям.

«Из 45 апорий, выдвинутых Зеноном, до нас дошло 9. Классическими являются пять апорий, в которых Зенон анализирует понятия множества и движения. Первую, получившую название «апория меры», Симпликий излагает следующим образом: «Доказав, что, «если вещь не имеет величины, она не существует», Зенон, прибавляет: «Если вещь существует, необходимо, чтобы она имела некоторую величину, некоторую толщину и чтобы было некоторое расстояние между тем, что представляет в ней взаимное различие». То же можно сказать о предыдущей, о той части этой вещи, которая предшествует по малости в дихотомическом делении. Итак, это предыдущее должно также иметь некоторую величину в своё предыдущее. Сказанное один раз можно всегда повторять. Таким образом, никогда не будет крайнего предела, где не было бы различных друг от друга частей. Итак, если есть множественность, нужно, чтобы вещи были в одно и то же время велики и малы и настолько малы, чтобы не иметь величины, и настолько велики, чтобы быть бесконечными».

Аргумент Зенона, вероятнее всего, направлен против пифагорейского представления о том, что тела «состоят из чисел».

В самом деле, если мыслить число как точку, не имеющую величины («толщины», протяженности), то сумма таких точек (тело) тоже не будет иметь величины, если же мыслить число «телесной, как имеющее некоторую конечную величину, то, поскольку тело содержит бесконечное количество таких точек (ибо тело, по допущению Зенона, можно делить «без предела»), оно должно иметь бесконечную величину. Из этого следует, что невозможно мыслить тело в виде суммы неделимых единиц, как это мы видели у пифагорейцев.

Можно, пожалуй, сказать, продолжив мысль Зенона: если «единица» неделима, то она не имеет пространственной величины (точки); если же она имеет величину, пусть как угодно малую, то она делима до бесконечности. Элеаты впервые поставили перед наукой вопрос, который является одним из важнейших методологических вопросов и по сей день: как следует мыслить континуум - дискретным или непрерывным? состоящим из неделимых (единиц, «единств», монад) или же делимым до бесконечности?

Любая величина должна быть понята теперь с точки зрения того, состоит ли она из единиц (как арифметическое число пифагорейцев), неделимых «целых», или она сама есть целое, а составляющие её элементы самостоятельного существования не имеют. Этот вопрос ставится и по отношению к числу, и по отношению к пространственной величине (линии, плоскости, объёму), и по отношению к времени. В зависимости от решения проблемы континуума формируются и разные методы изучения природы и человека, т. е. разные научные программы». 

Гайденко П.П., Эволюция понятия науки: становление и развитие первых научных программ, М., «Урсс», 2010 г., с. 65-67.

 

«О Зеноне Элейском и его парадоксах, таких, например, как известная загадка про быстроногого Ахиллеса, который не может догнать черепаху, казалось бы, написано уже так много, что вряд ли ещё раз требуется возвращаться к сформулированным им еще в V в. до н. э. «трудным вопросам» (апориям), относящимся к отображению движения в науке и к понятию «множества» (к соотношению непрерывного и дискретного).

С тех пор апории Зенона не переставали интересовать математиков и философов. Однако вплоть до наших дней на их счёт существуют самые разнообразные мнения: от совершенно-пренебрежительного отношения к ним до признания того, что они относятся к наиболее важным и трудным вопросам обоснования математики и физики.

Так, известному французскому математику Полю Леви парадокс об Ахиллесе и черепахе представляется очевидной нелепостью.

«Почему воображать себе, - пишет он, - что время остановит свой ход вследствие того, что некий философ занимается перечислением членов сходящегося ряда?» «Признаюсь, я никогда не понимал, как люди, в других отношениях вполне разумные, могут оказаться смущёнными этим парадоксом, и ответ, который я только что наметил, есть тот самый ответ, который я дал, когда мне было одиннадцать лет, старшему, рассказавшему мне этот парадокс, или, точнее, есть тот самый ответ, который я резюмировал тогда такой немногословной формулой: «Этот грек был идиотом».

Я знаю теперь, что нужно выражать свои мысли в более вежливой форме и что, быть может, Зенон излагал свои парадоксы только для того, чтобы проверить разумность своих учеников. Но моё удивление перед умами, смущаемыми понятием сходящегося ряда, осталось тем же. (Р. Levy, A propos du paradoxe et de la logique,. «Rev. Meta-phys. Morale», 1957, N 2, p. 130)».

Яновская С. А., Методологические проблемы науки, М., «КомКнига», 2006 г.,  с. 214.