Эволюция / развитие коры мозга

«… можно предположить, что эволюция от слабо- и среднеинтеллектуальных систем к высокоинтеллектуальным происходила по двум направлениям.

Первоначальное увеличение областей памяти, ответственных за осознанное поведение, привело к революционной реорганизации структуры мозга, а последующее увеличение объёма отдельных регионов и существенное изменение связей между этими структурами привели к дальнейшему развитию и расхождению видов внутри каждого класса представителей животного мира.

У неинтеллектуального представителя животного мира - червя, мозг содержит только сенсорные области и область, в которой отражены «жёстко смонтированные» структуры, ответственные за поведение особи. В мозге насекомых начинают развиваться грибные тела, ответственные за осознанное поведение, происходит реорганизация структур, выделение этих областей в отдельную структуру и развитие связей этой структуры с первичной «жёстко смонтированной» структурой.

Чем больше объём вновь образованных структур, особенно нейросетевых (calyces), тем больше проявляются интеллектуальные способности насекомого. Мозг дрозофилы, одного из наименее интеллектуальных насекомых, содержит минимальное количество calyces, мозг пчелы - одного из наиболее интеллектуальных - максимальное. Мы видим, что структуры мозга червя и насекомых в принципе отличаются своими структурами. Но внутри одного класса «насекомые» различия в структуре мозга незначительны, в основном эти различия определяются объёмом областей и множественностью связей между и внутри них.

Следующий этап в эволюции мозга, можно предположить, связан со значительным увеличением поверхности calyces, состоящей из особого класса нейронов - Kenyon cell, по-видимому, прародителей коры головного мозга млекопитающих. Происходит следующий этап преобразования структуры мозга.

Все будущие основные структуры головного мозга млекопитающих в том либо другом виде заложены в виде отдельных подструктур в первичном, вторичном и третичном мозгах насекомых.

Внутри грибных тел происходит явное выделение структур, отражающих рабочую и декларативную память, и их подструктур. Происходит реорганизация центрального комплекса мозга насекомых, выделение его первоначальных структур в мозжечок и гиппокамп. Возникают непосредственные связи грибного тела и центрального комплекса. Структура мозга насекомых преобразуется в структуру головного мозга млекопитающих.

Мозг достаточно простых животных перерабатывает информацию о внешнем мире в таламусе и вырабатывает отклик в базальных ганглиях и мозжечке. Мозг более сложных животных в дополнение к этим основным структурам содержит ряд перерабатывающих структур, реализующих осознание. Эти структуры локализованы в многослойном кортексе (который содержит до 85% всей массы мозга).

Узнавание происходит по схеме: сенсорный вход и интегрированное ощущение перерабатываются в затылочной височной и теменной долях. Выработка решений и поведенческий отклик вырабатывается во фронтальных долях. Сенсорные доли в основном локализованы в задних частях мозга (над таламусом), а фронтальные доли спереди (над базальными ганглиями). Такая кортикальная и субкортикальная организация «сзади вперёд», когда узнавание происходит в задних частях кортекса, а отклик - в передних, характерна для всех млекопитающих

Лавинообразное увеличение неокортекса является важнейшей чертой эволюции млекопитающих. Степень этого увеличения отличает приматов от остальных млекопитающих, а человека - от приматов. Имеет место существенное увеличение развития кортекса, но без столь же значительных изменений внешней конструкции мозга.

Для оценки показателя развития мозга было предложено использовать тот факт, что, как предполагают, современные примитивные насекомоядные мало изменились по сравнению со своими предками, от которых произошла также линия человека. За этот показатель было предложено использовать отношение наблюдаемого объёма мозга и отдельных его областей к тому его объёму, какой предполагается у насекомоядных с таким же весом тела.

Показатель развития неокортекса для человека оказался равен 156, для шимпанзе 80, для других обезьян - до 40, для других млекопитающих - ещё меньше. Степень развития других областей мозга у человека, как мы уже писали выше, дает значительно меньшее увеличение: базальных ганглий - 14-16, гиппокампа - 4, мозжечка - 5, дорсального таламуса - 5.

Обонятельные структуры остаются без изменений или даже регрессируют. Следует также отметить, что, как предполагают, ни на какой стадии эволюции млекопитающих не появлялись совершенно новые типы клеток, присущие только одному виду мозга.

Увеличение неокортекса у приматов происходило путём большого расширения его поверхности без существенных изменения вертикальной организации.

Число нейронов по вертикали, идущей через толщу коры, остается постоянным для моторной, соматосенсорной, лобной, теменной и височной корковых областей у мыши, кошки, крысы, макаки и человека. Хотя число нейронов в подобном вертикальном цилиндре (миниколонке) неизменно и равно приблизительно 110, плотность их упаковки и, тем самым, толщина слоя, варьирует у разных млекопитающих приблизительно в три раза. Эти различия объясняются вариациями в развитии связей между миниколонками.

Одновременно с увеличением неокортекса, а тем самым и количества миниколонок, и с увеличением их связей происходит и образование некоторых новых структур мозга, и существенное изменение их функций. Этот процесс совершенно естественен, резкое увеличение количества взаимодействующих единиц в системе должно приводить к качественным изменениям её структуры.

Дальнейшее развитие головного мозга млекопитающих, как правило, связано не с изменением общей модели мозга, а с наращиванием обьёмов тех регионов, которые ответственны за осознанное интеллектуальное поведение и связи этих регионов друг с другом.

Возникла достаточно устойчивая конструкция структур, дающая определённые преимущества отдельным видам животных в занимаемой ими нише внешнего мира.

Можно предположить, что дальнейшие революционные изменения структуры мозга, отличающие головной мозг человека от остальных млекопитающих, были связаны с существенными изменениями не только, и даже не столько, с объёмом эпизодической памяти, в которой хранится информация о прошлом состоянии мира, как с общей реорганизацией связей между структурами мозга, позволяющей раздельное функционирование неосознанного и осознанного поведений, а также с реорганизацией внутренней структуры эпизодической памяти, приведшей к созданию многослойного описания внешнего мира.

Шетлворт (Shettleworth, 1998) в своем, одном из самых исчерпывающих, исследовании в области мозга животных, определила, что сознание у животных не является индивидуальным субъективным феноменом. Она исследовала процессы осознания у животных и пришла к выводу, что мозг животных структурирован в некотором количестве модулей, которые используют различные информационные технологии, выработанные в процессе эволюции. У каждого вида животных эти модули соответствуют той уникальной нише, которую эти виды занимают в природе. Таким образом, животные обладают сознанием, понимаемым в смысле способности решать проблемы, связанные со своим целенаправленным поведением.

Выживание зависит от способности организма эффективно распознавать опасность и вырабатывать отклик, создающий возможности противостоять этим угрозам. Фронтальные доли и, особенно, префронтальные регионы мозга предоставляют человеку и многим видам млекопитающих существенные преимущества в решении этих задач, потому что они позволяют им кроме чисто реактивного поведения, свойственного большинству животных, предвидеть последствия тех либо других действий и вырабатывать соответствующие решения.

Таким образом, на вопрос «имеют ли животные разум?» можно ответить следующим образом: животные, у которых архитектура мозга содержит не только «жёстко реализованные» алгоритмы возможного поведения, но и структуры, реализующие базы правил и знаний с доступом к отдельным их элементам, имеют разум.

Индивидуальные свойства этого разума внутри какого-либо одного вида, очевидно, всегда будут базироваться на общих структурно-однородных механизмах. Тип подобного разума зависит от «конструкции» этих структур, но в любом случае разум должен реализовывать адаптацию его носителя к эконише, в которой он функционирует».

Рапопорт Г. Н., Герц А.Г., Биологический и искусственный интеллект, Часть 2. Модели сознания. Может ли робот любить, страдать и иметь другие эмоции?, М., «Либроком», 2011 г., с. 131-133.

 

Эвристические механизмы высших порядков по Г.С. Альтшуллеру.