Позиционирование научных идей / инноваций
МатематикаМатематические открытия; а также математические идеи, используемые в других областях деятельности
X
Позиционирование научных идей / инноваций
МатематикаМатематические открытия; а также математические идеи, используемые в других областях деятельности
X
«… французский математик середины XVII века Пьер Ферма (вообще-то он занимался математикой, а заодно и оптикой, как хобби: служебные его обязанности состояли в заведовании отделом петиций тулузского парламента). Поиски требуемых примеров ни к чему не привели, и Ферма пришёл к убеждению, что их не существует. Утверждение о несуществовании троек Ферма принято называть Великой теоремой Ферма.
Строго говоря, его следовало бы называть Великой гипотезой Ферма, поскольку автор утверждения не оставил нам его доказательства. Всё, что Ферма оставил потомкам на эту тему, - это две латинские фразы, написанные им около 1637 года на полях изданной в 1621 году в Париже на двух языках, греческом и латинском, «Арифметики» древнегреческого математика Диофанта.
Указанное издание обладало широкими полями, и когда у Ферма появлялись те или иные мысли по ходу чтения, он записывал их на этих полях. И вот какие две фразы он, в частности, написал - приводим эти фразы в переводе:
«Невозможно для куба быть записанным в виде суммы двух кубов, или для четвёртой степени быть записанной в виде суммы двух четвёртых степеней, или вообще для любого числа, которое есть степень больше двух, быть записанным в виде суммы двух таких же степеней. Я нашёл поистине удивительное доказательство этого предложения, но оно не уместится на полях (hanc marginis exiguitas non caperet; буквально: скудость поля его не вмещает)».
Своих математических открытий Ферма никогда не публиковал, часть их (да и то без доказательств) сообщалась им в частной переписке, а часть стала известной только после его смерти в 1665 году.
К числу последних принадлежит и Великая теорема: в 1670 году старший сын Пьера переиздал в Тулузе Диофантову «Арифметику», включив в издание и 48 примечаний, сделанных его отцом на полях.
Лишь в 1994 г. Эндрю Уайлз при участии своего ученика Ричарда Тэйлора доказал наконец Великую теорему - и притом доказал с использованием всей мощи современной математики, так что если сам Ферма и владел доказательством (что более чем сомнительно), то заведомо не таким. А до того Великая теорема оставалась Великой гипотезой.
Задача доказать гипотезу Ферма составила содержание Проблемы Ферма. Простота формулировки проблемы, доступной школьнику младших классов, делала её привлекательной для широких кругов любителей. Привлекательность усиливалась давностью постановки и ореолом некоей таинственности, сопутствующей постановке. А тут ещё в 1908 году была объявлена премия в сто тысяч германских марок за решение Проблемы Ферма. Вскоре мировая война обесценила премию, но было уже поздно: слух о премии привлёк к Проблеме Ферма ещё больше «старателей». Возникла особая разновидность людей, называемых ферматистами.
Ферматисты - это люди, не имеющие специального математического образования, фанатично убеждённые в том, что они решили Проблему Ферма, и настойчиво ищущие признания. Признания они, естественно, не получили, но, завалив своими рукописями математические кафедры ряда крупных западных университетов, заставили эти кафедры занять оборонительную позицию: университеты стали возвращать авторам любые доказательства Великой теоремы Ферма, прилагая при этом стандартное письмо с указанием, что доказательство будет рассмотрено только после получения денежного залога.
А известный гётттингенский профессор Эдмунд Ландау (избранный в 1932 году иностранным почётным членом Академии наук СССР) даже изобрёл специальный бланк, который он поручал заполнять своим аспирантам:
«Дорогой сэр (мадам)! Мы получили Ваше доказательство Великой теоремы Ферма. Первая ошибка находится на странице ..., строка ...».
Успенский В.А., Апология математики, или о математике как части духовной культуры, журнал «Новый мир», 2007 г., N 11, с. 133-134.