Открытие физических законов по Ричарду Фейнману [продолжение]

Начало »


Амплитуды вероятностей выглядят очень странно, и с первого взгляда Вы совершенно уверены, что эта новая теория безусловно нелепа. Но всё, что можно вывести из представления о квантовомеханических амплитудах вероятности, как бы странно это представление ни выглядело, оказывается верным, и так на протяжении всей теории странных частиц, на все 100 %. Поэтому я не думаю, что когда мы откроем законы внутренней структуры нашего мира, эти представления окажутся неправильными Мне кажется, что эта часть физики правильна, но я только высказываю предположение, я рассказываю Вам, как я строю догадки. В то же время теория, согласно которой пространство непрерывно, мне кажется неверной, потому что она приводит к бесконечно большим величинам и другим трудностям. Кроме того, она не даёт ответа на вопрос о том, чем определяются размеры всех частиц. Я сильно подозреваю, что простые представления геометрии, распространённые на очень маленькие участки пространства, неверны. Говоря это, я, конечно, всего лишь пробиваю брешь в общем здании физики, ничего не говоря о том, как её заделать. Если бы я это смог, то я закончил бы лекцию новым законом.

Некоторые, указывая на противоречивость принципов физики, говорят, что существует только один внутренне непротиворечивый мир, а поэтому если мы соберём все принципы вместе и будем вычислять всё очень и очень точно, то сможем не только вывести все настоящие принципы, но и обнаружить, что это единственные принципы, которые могут существовать при том условии, что все должно оставаться внутренне непротиворечивым. Мне такой замах кажется слишком большим. Мне кажется, это всё равно, что «вилять» собакой, держа её за хвост. Я думаю, что необходимо принять существование некоторых вещей, - не всех 50 с лишним частиц, но нескольких маленьких частиц вроде электрона и т. п., - а затем, вероятно, окажется, что вся наблюдаемая сложность устройства нашего мира является естественным следствием этого факта и справедливости определенных принципов. И я не думаю, что все это можно получить из одних рассуждений и внутренней непротиворечивости.

Другая стоящая перед нами задача связана с наличием слабых симметрий. Существование таких симметрий вроде утверждения, что нейтрон и протон совершенно одинаковы, за исключением их электрических свойств, или что принцип зеркального отображения вереи всюду, кроме реакции одного типа, всё это очень досадно. Казалось бы, всё симметрично, но на самом деле не до конца. По этому вопросу сейчас существуют две различные точки зрения. Одна утверждает, что на самом деле всё просто, что на самом деле всё симметрично и что все дело в небольших осложнениях, немного нарушающих идеальную симметрию. Другая школа, у которой всего один последователь, - это я, не согласна с этим и верит, что всё очень сложно и что простота достигается лишь через сложность. Древние греки считали, что планеты движутся по круговым орбитам. На самом же деле эти орбиты эллиптические. Они не идеально симметричны, но очень мало отличаются от окружностей. Возникает вопрос, а почему они симметричны только приближённо? Почему они так мало отличаются от окружностей? Из-за долговременного и очень сложного эффекта приливного трения - это очень сложная теория. Очень может быть, что в глубине души природа совершенно несимметрична, но в хитросплетениях реальности она начинает выглядеть почти симметричной, и эллипсы начинают походить на окружности. Вот Вам и другая возможность. Но никто не знает ответа наверняка, все это просто догадки.

Предположим, что имеются две теории А и В, совершенно различные с психологической точки зрения, построенные на совершенно разных принципах и т. д., но такие, что асе вытекающие из них следствия в точности одинаковы и совпадают с экспериментом. Итак, у нас есть две гипотезы, которые поначалу звучат совсем по-разному, но все выводы из которых оказываются одинаковыми (это обычно нетрудно показать математически, доказав, что логика теорий А и В всегда приводит к одинаковым результатам). Предположим, что такие две теории существуют, и зададим себе вопрос, на каком же основании мы отдадим предпочтение одной из них. Наука этого не знает, так как каждая из них согласуется с экспериментом в одинаковой степени. Поэтому две теории, основывающиеся, возможно, на глубоко различных принципах, могут быть с математической точки зрения идентичными, и не существует научного метода выяснения, какая из них верна. Однако с психологической точки зрения обе эти теории могут быть совершенно не равноценными для угадывания новых теорий; ведь они построены совсем на разных фундаментах. Находя для теории место в определённой схеме понятий, Вы можете вдруг разглядеть, что здесь требует изменения. Например, в теории А что-то говорится о чем-то, а Вы скажете: «Вот это нужно изменить». Но выяснить, что нужно изменить в другой теории для того, чтобы прийти к эквивалентному результату, может быть очень сложным, и додуматься до этого, может быть, совсем не просто. Другими словами, предполагаемое изменение может быть совершенно естественным для одной теории и столь же неестественным для другой, хотя до него они были абсолютно тождественны. Вот почему, учитывая психологию научного творчества, мы должны помнить о всех этих теориях и вот почему каждый приличный физик-теоретик знает шесть или семь теоретических обоснований одних и тех же физических фактов. Он знает, что они эквивалентны и что никто и никогда не сможет решить, оставаясь на этом же уровне, какая из этих теорий верна, но он помнит о них всех, надеясь, что это подскажет ему разные идеи для будущих догадок.

А это напоминает мне ещё об одном вопросе, о том, что совсем незначительные поправки к теории могут потребовать радикальной перестройки понятий и представлений, лежащих в её основе. Например, представления Ньютона о пространстве и времени прекрасно согласовались с экспериментом, но для того, чтобы правильно объяснить движение планеты Меркурий, а оно едва заметно отличалось от того, что получалось по теории Ньютона, потребовались колоссальные изменения в характере всей теория. Причина этого кроется в том, что законы Ньютона были весьма просты, весьма совершенны и давали вполне определённые результаты. Для того, чтобы построить теорию, которая вносила бы едва заметные поправки, её нужно было полностью изменить. Формулируя новый закон, нельзя ввести неидеальности в идеальную схему: нужна совершенно новая идеальная теория. Вот почему так велика разница в философии теории гравитации Эйнштейна и теории всемирного тяготения Ньютона.

Что же такое идейное обоснование физической теории? На самом деле это просто ловкий способ быстро делать вывод. Философская или, как её ещё иногда называют, идеологическая интерпретация закона является лишь способом, позволяющим держать этот закон в голове в виде, пригодном для быстрого отгадывания его следствий. Некоторые говорят (и они правы в случае, например, уравнений Максвелла): «Бросьте Вы Вашу философию, все эти Ваши фокусы, а лучше угадывайте-ка правильные уравнения. Задача лишь в том, чтобы вычислять ответы, согласующиеся с экспериментом, и если для этого у Вас есть уравнения, нет никакой нужды в философии, интерпретации или любых других словах».

Это, конечно, хорошо в том смысле, что, занимаясь одними уравнениями, Вы свободны от предрассудков и Вам легче отгадывать неизвестное. Но, о другой стороны, может быть, именно философия помогает Вам строить догадки. Здесь трудно сделать окончательный выбор. Пусть те, кто настаивает на том, что единственно важным является лишь согласие теории и эксперимента, представят себе разговор между астрономом из племени майя и его студентом. Майя умели с поразительной точностью предсказывать, например, время затмений, положение на небе Луны, Венеры и других планет. Всё это делалось при помощи арифметики. Они подсчитывали определённое число, вычитали из него другое и т. д. У них не было ни малейшего представлений о вращении небесных тел. Они просто знали, как вычислять время следующего затмения или время полнолуния и т. п. Так вот, представьте себе, что к нашему астроному приходит молодой человек и говорит: «Вот что мне пришло в голову. Может быть, всё это вертится, может, это шары из камня или что-нибудь в этом роде, и их движение можно рассчитывать совсем иначе, не просто, как время их появления на небе». - «Хорошо, - отвечает ему астроном, - а с какой точностью это позволит нам предсказывать затмения?» - «До этого я ещё не дошёл», - говорит молодой человек. «Ну, а мы можем вычислить затмения точнее тебя, -  отвечает ему астроном, - так что не стоит дальше возится с твоими идеями, ведь математическая теория, очевидно, лучше». И практически каждый раз, когда у кого-нибудь появляется свежая идея сегодня и он говорит: «А может быть, всё происходит вот так», ему спешат возразить: «А какое решение такой-то и такой-то задачи у Вас тогда получится?» - «Ну, до этого я ещё не дошёл», -   следует ответ. «А мы уже продвинулись гораздо дальше и получаем очень точные ответы». Как видим, нелегкая задача решать, стоит или не стоит задумываться над тем, что кроется за нашими теориями.

Ещё один метод работы, конечно, состоит в выдумывании новых принципов. В теории гравитации Эйнштейн сверх всех остальных принципов придумал принцип, основанный на идее, что силы всегда пропорциональны массам. Он догадался, что если Вы сидите в разгоняющемся автомобиле, то Вы не сможете отличить своё состояние от того, в котором Вы оказались бы в поле тяжести. Добавив этот последний принцип ко всем остальным, он смог правильно угадать уравнения гравитационного поля.

Я показал Вам несколько различных путей новых открытий».

Ричард Фейнман, Характер физических законов, М., «Наука», 1987 г., с. 148-156.

 

О роли неявных научных допущений по Ричарду Фейнману