Инструкция по работе с Контекстной панелью

Математические способности по Б.В. Гнеденко

«Очень большой и сложный вопрос: имеются ли у данного ученика математические способности или нет?

Прежде всего, что понимать под наличием способностей: творческие способности или же способность успешно преодолеть школьную программу по математике, программу втуза?

Слишком большой разброс начальных данных в исходном материале: одни не научились учиться и считают, что если они запомнили без понимания правила, методы решения, то это всё, что от них требуется; других же с раннего детства приучили прежде понимать, а потом запоминать, и к самостоятельному поиску решений; третьих - пользоваться правилами решения, придуманных для разных типов задач, но не самостоятельно мыслить.

Третий тип хорошо известен преподавателям, они знают этих натасканных на правилах мальчиков и девочек, у которых моментально слетают с языка заученные формулировки, но нет привычки искать самостоятельное решение.

Мне приходилось встречаться со школьниками всех трёх указанных типов первоначальной математической подготовки. Конечно, те, кто привык понимать и самостоятельно мыслить, резко выделялись на фоне остальной серенькой массы. Но затем, когда после двух-трёх лет переподготовки и остальные подходили к необходимости понимания материала и отказывались от привычки зазубривания без понимания, появлялись и в их среде яркие личности, способные вносить нечто новое, предлагать неожиданные решения, проявлять свои истинные способности.

Моё убеждение, что способности к хорошему познанию математики, по крайней мере школьной и вузовской, имеют все нормальные дети. Их только нужно научить учиться. Научить пользоваться тем даром, которым наделила человека природа - способностью мыслить. Некоторые школьники буквально менялись коренным образом, когда в их первоначальном математическом образовании удавалось ликвидировать пропуски в знаниях и умениях. Поэтому я резко осуждаю тех, кто слишком рано приклеивает к тому или иному учащемуся ярлык неспособного к математике. Я позволю себе в качестве примера привести самого себя: включительно до шестого класса мне тяжело давалась математика, я испытывал постоянный страх перед задачами.

Я помню, как говорил родителям: «как бы было хорошо учиться, если бы не было математики». В 1925 г. семья переехала в Саратов. Обнаружилось, что в саратовской школе прошли по математике больше, и мне пришлось догонять класс. Я самостоятельно изучил нужные разделы и обратился к прежнему материалу, в котором у меня также оказались пробелы.

Затем мне на глаза попался сборник конкурсных задач, предлагавшихся при поступлении в Петербургский институт путей сообщения. Я перерешал значительное число задач самостоятельно. Через полгода я прослыл лучшим учеником класса по математике. Всё дело в том, что при самостоятельной работе над учебником я доводил дело до понимания и только затем шёл дальше, предварительно закрепляя пройденный материал самостоятельным решением задач. Затем в университете я также занял положение математического лидера, хотя речь шла только об учебном процессе, а не о собственном творчестве. Потребовалось много лет, чтобы я выдвинул проблемы для исследования и начал влиять на творческие интересы других.

Будучи студентом университета, я придерживался такого правила: внимательно слушал лекции, в тот же день просматривал сделанные краткие записи и расширял полученные сведения, прочитывая соответствующие места учебника. Изученное немедленно закреплял несколькими самостоятельно решенными задачами. Такой способ повторения помогал мне избегать горячки перед экзаменами. Мне достаточно было освежить в памяти ранее изученное.

Я никогда не позволял себе идти дальше, не поняв предыдущего. Пожалуй, имеет смысл сказать, что сразу же после лекций, после обдумывания, я вкратце записывал содержание лекции, уделяя внимание четкости формулировок определений и теорем. Дополнительные сведения, почерпнутые из книг, я также помещал после записи содержания лекции. Мои записки пользовались успехом на курсе, их брали, переписывали, просили на время каникул для пересдачи. В результате мне не удалось сохранить ни одной такой тетради, все они разошлись по рукам.

Я считаю, что составление записок мне принесло двойную пользу. Во-первых, я с самого начала изучал как следует всё новое, что нам излагалось и, во-вторых, я приучался кратко излагать то основное, что следовало знать и уметь применять. Эта привычка к кратким и чётким формулировкам сохранилась у меня на всю дальнейшую жизнь.

Если говорить о способностях воспринимать курс школьной и вузовской математики, то я убеждён в том, что в большинстве случаев отсутствие способностей приписывают тем, кто не хочет учиться или же имеет серьёзные пробелы в предшествующих частях курса и не считает нужным восстановить своевременно непознанное. Многолетний опыт общения со студентами, школьниками и их родителями убедил меня в том, что, как правило, неудачи усвоением курса математики связаны не с отсутствием математических способностей, а с отсутствием прочных знаний фундаментальных понятий, с ленью ума, которая мешает систематической работе над материалом, и со стремлением се познание свести к запоминанию без понимания. Мы же должны помнить, что только в самостоятельном преодолении трудностей - ключ к познанию и уверенности в своих гениях и знаниях.

В подавляющем большинстве случаев, когда говорят об отсутствии у учащегося математических способностей для познания обязательного курса, речь должна идти о другом - либо о неумении, либо о нежелании учиться.

Заключение же об отсутствии способностей обычно педагогически необосновано и вредно. Такое заключение способно угнетающе подействовать на психику учащегося. Это во-первых. А во-вторых, оно как бы выдает индульгенцию лентяю или же не научившемуся учиться.

Умение учиться не приходит само собой, а нуждается в систематическом воспитании, постоянном внимании учителей и серьёзных усилиях учащихся. Цель школьного обучения состоит не в том, чтобы перегрузить память учащихся сведениями, которые не превращаются в орудие труда, а в том, чтобы сделать ум пытливым, подвижным, способным анализировать новые ситуации, находить подходы к решению возникающих проблем. Тот, кто делает ставку только на память, на зубрёжку, отключает мысль, разум от работы по познанию. Память обязана играть роль активного помощника разума, и не следует навязывать ей несвойственную роль единственного средства познания. В памяти должны храниться основные сведения и идеи, которые по мере надобности превращаются в активные методы.

Точно так же невозможно научить говорить на чужом языке, если только снабдить память словами и правилами. Этого мало. Необходимо ещё приучить человека активно пользоваться полученным запасом знаний. А для этого нужно говорить, т. е. заставлять знания не лежать мертвым грузом в недрах памяти, а активно действовать. Для математики упражнения на решение задач, на проведение логических заключений так же обязательны, как разговор на чужом языке при его изучении».

Гнеденко Б.В.,  Математика и жизнь, М., «Комкнига», 2006 г., с.118-121.